Autor Tema: Povijest i GIS  (Posjeta: 11631 )

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
i janezi
« Odgovori #30 : 14 Veljača 2012, 00:28:12 prijepodne »
Mikael Rittri se gnjavio problemom Ferro datumske zavjese. Jedna u nizu poruka.*
»That Albrecht's value is used in Yugoslavia, is also confirmed by the University of Pittsburgh: http://corona.eps.pitt.edu/Website/yugoslavia.html (except that they say 17° 39' 36", but I think the 36" must be a typo and 46" was intended).«

Te stranice više nema. Ni na web.archive.org Zato (se) zatrpavam citatima.

Clifford Mungier. Grids & Datums. republic of Slovenia.*

»The MGI datum was finalized in 1901, but the switch to Greenwich occurred later (in the 1920s?). A new adjustment was made in Yugoslavia in 1948.

is the Yugoslavia Reduced Gauss-Krüger Transverse Mercator,

The 7-parameter Helmert transformation published for Slovenia from SI_D48 datum to ETRS89 datum is where: DX = +426.9 meters, DY = +142.6 meters, DZ = +460.1 meters, Scale = +17.1×10-6, Z-rotation (w) = – 12.42 sec- onds, Y-rotation (y) = +4.49 seconds, and X-rotation (x) = +4.91 seconds. A test point provided is from SI_D48: j = 45° 36’ 54.72”N, l = 14° 01’ 59.52”E, X = 5,052,752.959 m, Y = 424,607.776 m, ETRS89: j = 45° 36’ 53.733”N, l = 14° 01’ 42.771”E, X = 5,051,723.46 m, Y = 424,258.16 m.«

Do 1920-ih će ipak trebat MGI Austria.
Wiki. Datum Austria*
»
AnwendungStartsystemZielsystemcx (Meter)cy (Meter)   cz (Meter)s (ppm)rx (Bogensekunde)ry (Bogensekunde)rz (Bogensekunde)
GPSWGS84Datum Austria−577.326−90.129−463.919−2,42325,13661,47425,2970
AGREFWGS84Datum Austria−577.326−90.129−463.919−2,423215,85374,550016,3489
«

cx (m)cy (m)cz (m)ΔA (m)ΔF (x10^4)Marke/ProduktBezeichnungMethode
596874737380,1003748GarminAustria NSMolodensky
577,390,1493,9739,8450,10037483Magellan, sonstigeUserMolodensky

Još wiki štiva:*
»
Anpassung des Ellipsoids an die Lotrichtungen
Der Schlüssel für diese Anpassung ist die sogenannte Lotabweichung: Wenn man mit einem Lot die Senkrechte ermittelt, steht sie keineswegs auch normal auf das Ellipsoid. Die Gebirge, Täler und Massenstörungen im Untergrund können Winkelabweichungen bis zu 0,01° erzeugen, was die Messgenauigkeit fast 100-fach übertrifft. Man kann jedoch das Ellipsoid so im Erdkörper lagern, dass die Lotabweichungen im Landeszentrum oder im Durchschnitt des ganzen Landes zu Null werden.

Die erste Methode wurde im 19. Jahrhundert zum Beispiel für die Landesvermessungen von Deutschland und von Österreich-Ungarn gewählt: Man legte den Nullpunkt astro-geodätisch derart in Potsdam bzw. bei Wien fest, dass seine Lotrichtung auch senkrecht auf das Ellipsoid stand. An den jeweiligen Fundamentalpunkt wurden alle Vermessungspunkte des Netzes geometrisch angeschlossen, sodass sich ihre Koordinaten indirekt bis heute auf diese Nullpunkte beziehen.

Das Ellipsoid wird daher so gelagert, dass es im Zentralbereich des Vermessungsnetzes die mittlere Erdkrümmung realisiert.

Diese Lagerung erfolgt im sogenannten Fundamentalpunkt. Auf einer zentral gelegenen Sternwarte oder einem Vermessungspfeiler wird mittels der Sterne die genaue Lotrichtung bestimmt (Astronomische Länge und Breite) und das Referenzellipsoid darauf exakt senkrecht "aufgespießt". Für die deutsche Landesvermessung liegt dieser astronomische Nullpunkt bei Potsdam, für Österreich bei Wien, beide verwenden aber das Besselellipsoid.

Eine spezielle Geschichte hat das Vermessungsnetz Österreich-Ungarns und sein Datum MGI. Zunächst gab es 7 bzw. 8 Fundamentalpunkte für die einzelnen Regionen. Im späten 19. Jahrhundert wählte man als gemeinsamen Nullpunkt den Hermannskogel (585 m) bei Wien, der fast im Zentrum des Gesamtstaates lag. Seit jedoch Österreich zum Kleinstaat wurde, wandelte sich die Zentral- zu einer östlichen Randlage, sodass die Lotabweichungen im Westen sehr groß wurden. Glücklicherweise erkannte der Astronom Karl Ledersteger um 1930, dass die absolute Lotabweichung des Hermannskogel fast zu Null wird, wenn die Albrecht’sche Längendifferenz Ferro-Greenwich von 17°39"46,02" auf 17°40'00? gerundet wird – was seither mit doppeltem Vorteil geschieht.

In Österreich liegt wegen des Einflusses der Alpen das Geoid 43 bis 52 Meter über dem im WGS 84 definierten Erdellipsoid. Die große Schwankung von 10 Meter verringert sich jedoch im Datum Austria auf -2,5 bis 3,5 Meter. Dieses Datum des österreichischen Bundesmeldenetzes bezieht sich auf ein Bessel-Ellipsoid, das in X-, Y-, Z-Richtung um 596, 87 und 473 Meter verschoben ist.

Für Deutschlands Bessel-Ellipsoid und das „Potsdam Datum“ beträgt die analoge Verschiebung 606, 23 und 413 Meter in X-Y-Z-Richtung (Internationale Konvention der 3 Achsen: X/Y ist die geozentrische Äquatorebene, Z die Erdachse, X weist auf den Nullmeridian, der auch durch Greenwich verläuft).«



Hermannskogel Fundamentalpunkt
Baujahr: 1888.
Punkt bestimmt: 1892.
B = 48° 16' 15.3"
L = 16° 17' 41.1"
Höhe über Adria = 558.7 m
Izvorni zapis sekundi i desetinki: …15".3; 41".1, glede zapisa mješovitih znamenki, seksagezimalno-sekunda-točka-decimalni_dio.
Iznad Jadrana. (Trieste, Molo Sartorio, visinski datum… a gradivaaa)
« Zadnja izmjena: 14 Veljača 2012, 00:53:21 prijepodne glonga »

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
Scheda Karte / Paris Meridian
« Odgovori #31 : 14 Veljača 2012, 15:26:24 poslijepodne »

Scheda Karte 1856. Composite XIII, XIV, XV, XVIII, XIX, XX: Karte Des Oesterreichischen Kaiserstaates. Expeditions-Bureau Wien. Rumsey collection*

Na ovoj karti iz 1856. koristi se pariški nulti meridijan. Sv. Abo (Gorica-Sovići) po toj karti je skoro pa na 15°E.
Razlika Ferro i Paris meridijana je 20° do Albrechta (1890.), otada je 17°39"46,02" kako gdje, da bi oko 1930. za Njemačku, Austriju, Češku… Ledersteger to zaokružio na 17°40'00".
Vuku li se iz ovih preračuna još 3".98 ili 6".02 greške i na koju stranu?
A Paris i sv. Abo na 15°?

»The Paris Meridian is a meridian line running through the Paris Observatory in Paris, France—now longitude 2°20′14.025″ east.«*
Je li ovakav seksagezimalno-decimalni zapis sekunda 14.025″ engleski stil ili greška utora engleskog wiki članka koju je prenio i autor njemačkog wiki članka* (2° 20' 14.025", a ne 2° 20' 14".025) i je li inzistiranje na "točnom" zapisu cjepidlačenje?
Sv. Abo u WGS84 bi trebao bit na 17°20'14".025 E. N ćemo vidit.

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
Scheda
« Odgovori #32 : 14 Veljača 2012, 16:39:29 poslijepodne »

Kako je kartirao Scheda? Kako georeferencirati Scheda karte?
Njegova karta iz 1856. je dostupna u MrSID* formatu ovdje*
Taj format je problematičan za otvaranje na različitim računalnim platformama. QGIS ima plugine za taj format za razne platforme. Složenost instalacije ovisi o platformi.
Na prvi pogled se čini da je Scheda koristio Besselov elipsoid. Za pariški meridijan znamo.
Bessel je objavio elipsoid 1841.
»Die Gesamtlänge der Messbögen beträgt nach Ledersteger* (s.Lit.) 50°34', was beachtlichen 5.700 Kilometern entspricht.

Gegenüber dem globalen Erdellipsoid, das heute auf Dezimeter genau bekannt ist, hat es um rund 700 Meter kürzere Achsen a (äquatorial) und b (polar).
«*

Redukcijske tehnike. (Kakve veze ima "reducirani Gauss-Krüger"?) Krüger je objavio metodu 1912. Kad su se "zagubile" Gaussove (1777.-1855.) formule?
»After the arrival of the geophysical reduction techniques many projects used other examples such as the Hayford ellipsoid of 1910 which was adopted in 1924 by the IAG as the International ellipsoid 1924.«*
»This Gauss–Krüger system is similar to the universal transverse Mercator system, but the central meridians of the Gauss–Krüger zones are only 3° apart, as opposed to 6° in UTM. As a consequence, the scale variation within a Gauss–Krüger zone is about 1/4 of what it is in a UTM zone.«*

Carl Friedrich Gauß. Untersuchungen über Gegenstände der höhern Geodaesie.* Erste Abhandlung (23. Oktober 1843)

A "onih 800 metara razlike"? Hint.
»Das Bessel-Ellipsoid ist Eurasien ideal angepasst, sodass sein 800-m-„Fehler“ für die Geodäsie Europas günstig ist - ähnlich wie die gegenteiligen 200 m des Hayford-Ellipsoids (nach John Fillmore Hayford) für Amerika.«

Sve je to lipo, no kad ugledat kompletan proj4 string koji definira projekciju koju je koristio Scheda 1856. (i prije)?
« Zadnja izmjena: 14 Veljača 2012, 16:42:37 poslijepodne glonga »

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
štivo
« Odgovori #33 : 14 Veljača 2012, 19:20:09 poslijepodne »


Scheda je mogao koristit najmanje 4 datuma na najmanje 3 elipsoida. Neprohodno.

Clifford J. Mugnier. Republic of Austria.* Grids & Datums. 2004.

The Bohnenberger ellipsoid was used from 1810 to 1845 where a = 6,376,602 meters and 1/f = 324.

The Zach ellipsoid was used from 1845 to 1863 where a = 6,376,602 meters and 1/f = 324.

From 1847 to 1851 the Walbeck ellipsoid was also used where a = 6,376,896 meters and 1/f = 302.78.

The third topographic survey of the Austro-Hungarian Empire (Neue Aufnahme) was conducted from 1869 to 1896 and was mainly based on the Vienna Datum and the Bessel 1841 ellipsoid (actually adopted in 1863) where a = 6,377,397.15 m and 1/f = 299.1528.

Sad bi valjalo napravit jednu kompilaciju asprs* dokumenata o mrežama i datumima* s vremenskom crtom i područjem primjene.

Dokumentacija je preciznija s datumom nastanka.
Slovenija (2011-10)*
Jugoslavija (1997-09)*
Ovdje ima (preko) nekoliko netočnosti i/ili nepoznanica. Uvod djeluje totalno nevjerodostojno (MGI, VGI, GIJNA 1920. etc. VGI 1871.).
»…Vienna University Observatory where: φ =48°12’35.50” N, λ = 16°22’49.98” E (later offset to Paris).

The Vienna University System 1892 used the now obsolete Zach 1812.

The “Parisian” system of mapping (based on the Prime Meridian of Paris, where the offset from Greenwich is accepted as λ = 2°20’13.95”E) was cast on the polyhedric projection from 1878 to 1959.

The most common classical datum (prior to the European 1950) found in the former Yugoslavia is the Hermannskogel 1871 Datum with φo = 48° 16’ 15.29” N, λo = 33° 57’ 41.06” East of Ferro, where Ferro = 17° 39’ 46.02” East of Greenwich and azimuth to Hundsheimer is α = 107° 31’41.7”. The most common grid found on that datum is the Yugoslavia Reduced [ ! ] Gauss-Krüger Transverse Mercator. The scale factor at origin (mo = 0.9999), the central meridians of the belts (C.M. = λo = 15°, 18°, 21° East of Greenwich) and the False Easting at C.M. = 500 kilometers.
The Ministry of Finance used the non-reduced version [ ! ] only between 1938-40 where mo = 1.0.

About fifty years ago, the Army Map Service transformed
Hermannskogel 1871 Datum to the European Datum 1950. [ ? 1999-50, 1948? ]


Twenty two points were used that are common to both datums in the former Yugoslavia and a simple three-parameter shift analysis yielded the following: ∆X = +770.417 meters, ∆Y = -108.432 meters, ∆Z = +600.450 meters. The accuracy of this transformation when expressed in terms of actual geodetic coordinates is: Latitude change (∆φ) = ± 3.74 meters, Longitude change (∆λ) = ± 4.54 meters, and Ellipsoid Height change (∆ h) = ± 12.70 meters. On the other hand, a seven-parameter shift analysis yielded the following: ∆X = +758.53 meters, ∆Y = +259.52 meters, ∆Z = +542.18 meters, Scale = -6.0X10-6, Z-rotation (ω) = +11.29 seconds, Y-rotation (ψ) = +2.06 seconds, and X-rotation (ξ) = -5.66 seconds. The accuracy of this transformation when expressed in terms of actual geodetic coordinates is: Latitude change (∆φ) = ± 1.07 meters, Longitude change (∆λ) = ± 1.44 meters, and Ellipsoid Height change (∆ h) = ± 0.64 meters. For example, station Vel Gradiste has the following EU50 coordinates: 45° 09’ 17.3501” N, 18° 42’ 44.9479” E, 0.0 m. and the following Hermannskogel 1871 coordinates: 45° 09” 14.4675” N, 18° 43’ 00.7696” E, 0.0 m. The Y ugoslavian   Reduced   Grid coordinates are: Northing (X) = 5,001,303.81 m., Easting (Y) = 556,359.65 m.«

Austrija (2004-03)*
»In 1872 the metric system was legally established in the Empire, and the scale of 1:25,000 fi- nally adopted for topographic maps. The graticule sheet was adopted with the Polyhedric projection in order to eliminate inconsisten- cies in sheet lines and differences in the size and shape of sheet lines. The baselines used were at… and at Sinj, Dalmatia (1870), 2475.474 m. The Walbeck ellipsoid was used in computing the chains in Balicia and Bucovina so that ties could be made with the Russian triangulation.

he most common classical datum (prior to the European 1950) found in Austria and still used extensively is the Militärgeographisches Institut (Military Geographic Institute or MGI) Hermannskogel, Habsburgwarte 1871 Datum where φo = 48° 16' 15.29" N, λo = 16° 17' 41.06" East of Greenwich, and the azimuth to Hundsheimer is αo = 107o 31' 41.7". I developed the seven-parameter datum shift relation between Hermannskogel 1871 and ED 50 for Yugoslavia (PE&RS, September 1997), but most of the points were not in present Austria.«

Madžarska (1999-04)*
»The Bohnenberger ellipsoid was used from 1810-1845 where a = 6,376,602 meters and 1/f = 324. The Zach ellipsoid was used from 1845-1863 where a = 6,376,602 meters and 1/f = 324. From 1847-1851 the Walbeck ellipsoid was also used where a = 6,376,896 meters and 1/f = 302.78.

In 1863, the Bessel ellipsoid of 1841 was prescribed for use in the triangulation instructions.

The metric system was legally established in 1872, and the 1:25,000 mapping scale was introduced along with the polyeder (polyhedric) projection to eliminate inconsistencies in map sheet lines.

In 1908, a system of three cylindrical projections was introduced, all with the Central Meridian of Budapest. The oblique cylinders touch the Gaussian sphere along the great circles perpendicular to the meridian at the following origins: 48° 42’ 56.3180” N, 47° 08’ 46.7267” N, and 45° 34’ 36.5869” N. For the orientation, the azimuth Gellérthegy-Széchényihegy was used, hence the common X axis of the three cylindrical projections form an angle of 6.44 arc seconds with the Budapest Stereographic Grid of 1874.«

Rumunjska (2001-05)*
»The Second Topographical Survey (in România) of the Austro-Hungarian Empire was the Franziszeische Aufnahme of 1806 to 1869 that utilized the Cassini-Soldner Grid of Vizakna, Sibiu (Hermannstadt) Observatory for Transylvania, România. The original coordinates of the Cassini Grid origin used from 1817- 1904 were φo = 45° 50' 25.430" North and λo = 41° 46' 32.713" East of Ferro, geodetically determined from Vienna. As per the European geodetic conven- tion of the time, no false origin was employed and coordinates were computed with quadrant signs. This Grid was cast on the von Zach 1812 ellipsoid where   a = 6,376,385 m and 1/f = 310.

The third topographic survey of the Austro- Hungarian Empire (NeueAufnahme) was conducted from 1869 to 1896 and was based on the St. Anna Datum … This Datum was originally referenced to the Zach 1812 ellipsoid, but the Austrians introduced the Bessel 1841 ellipsoid as a new standard for the empire in 1869 [ ? 1863.? ]

Remember that in past columns I have pointed out that the polyhedric projection is mathematically equivalent to the local space rectangular (LSR) coordinate system that is commonly used in computational photogrammetry. Of course, back then they did not transform first to the Earth-centered Geocentric Coordinate System and then perform a 3 by 3 rotation secant or tangent to the surface of the ellipsoid the way we do now. (It’s trivial with Fortran or C, but mind-boggling with tables of logarithms).«

Češka (2000-01)*
»The original triangulation of the region by first-order methods was by the III K. und K. military triangulation of the Austro-Hungarian Empire. The cadastral grids employed by the Happsburgs were the Böhmen Soldner (Cassini-Soldner) with a φo = 48° 02' 20.5" N, λo = 14° 08' 24.15" East of Greenwich, and the Mähren Soldner with a φo = 48° 12' 32.75" N, λo = 16° 22' 36.58" East of Greenwich.

In 1939, the Germans found that during their occupation of the “Protectorate of Bohemia and Moravia,” only 5% of the Protectorate’s terri- tory was covered by the new topographic survey. [ ! ]«

Bugarska (2002-01)*
»The first known map of Bulgaria, “Map of the Danube’s Downstream,” was published in Rome by A. Zaferi in 1560. Johan van der Brugen published a travel map of Bulgaria in 1737, Priest Constantin’s map was published in Vienna by D. Davidovich in 1819 at a scale of 1:350,000, and Hristo G. Danov produced a 1:1,000,000-scale map of European Turkey in 1863. The earliest large-scale geodetic surveys of Bulgaria were carried out in 1877 at the start of the Russo-Turkish War.

The earliest large-scale geodetic surveys of Bulgaria were carried out in 1877 at the start of the Russo-Turkish War.

The Turkish authorities agreed to allow Russian military surveyors to reconnoiter between 1867 and 1869 in order to ascertain suitable locations for the subsequent triangulation!«

Slovačka (2011-07)*
»Between 1918 and 1932, the Military Geographic Institute (MGI) applied the Lambert conformal conic projection for triangulation computations and mapping.«

Albanija (2012-01)*
»The Triangulation Network that was established by the Military Geographic Institute of Vienna (MGIW) during 1860-1873, in the framework of the construction of the geodetic basis was done for mapping of he Balkans at 1:75000 scale” (Coordinate Reference Systems Used in Albania to Date, Nikolli, P., & Idrizi, B., FIG Working Week 2011, Morocco, 18-22 May 2011). The Second Austro-Hungarian Triangulation (II Military Triangulation 1806-1869) used the Vienna University Observatory as the datum origin for regions that included Albania, where: Φo = 48° 12’ 35.50” N, Λo = 34° 02’ 36.00” East of Ferro, the azimuth to Leopoldsberg, αo = 163° 42’ 12.27” and the Bessel 1841 ellipsoid of revolution where the semi-major axis (a) = 6,377,397.155 meters and the reciprocal of flattening (1/f) = 299.1528. The reference meridian used was Ferro in the Canary Islands, where: 17‚ 39’ 46.02” West of Greenwich. The K.u.K. Military Geographic Institute of Vienna observed a 1st Order triangulation net in the Adriatic region that included an Albanian baseline measured just southeast of Lake Scutari at Shkodër in the early 1900s. “(It is only 0.726 m shorter than the Austrian base line measured in 1869.)” (Mapping of the Countries in Danubian and Adriatic Basins, Glusic, Andrew M., AMS TR No. 25, June 1959, 406 pages.)
While the Austro-Hungarian lands were mapped with a polyhedric projection, the Albanian Republic was mapped based on an ellipsoidal Bonne projection (Cohen, Ruth, Geodetic Memo No. 485, Development of Rinner’s Formulas in the Bonne projection and the inverse, Army Map Service, 28 October 1949.), where the projection origin is collocated at the Albanian Datum origin where: Φo = 41° 20’ 12.809” N, Λo = 19° 46’ 45.285” East of Greenwich and thanks to John W. Hager, the azimuth to East Base measured from North, αo = 294° 38’ 02.57”. This datum origin and projection origin is commonly referred to as being on the Tiranë-Durrës Highway in the Laprakë neighborhood of Tiranë. Upon perusal of Google EarthTM imagery, [ ! ] it appears that this point is likely centered in the median of a traffic circle/roundabout on that highway. Although some date the Bonne projection origin in 1918 (op. cit. Nikolli & Idrizi, 2011), others date the datum origin in 1932 (Marcussi, A., Lineamenti geoidici della penisola balcanica, Bol- lettino Geodetica, vol. XXIV, No. 4). “In 1946, the Yugoslav first order net was tied with the first order net of Albania. Common stations are: 328 Gruda-Griži, 331 Jubani, 332 Taraboš and 245 Cukali” (op. cit.,
Glusic, 1959).«

Italija (2005-08)*
»In 1875, the projection of the Carta d’Italia was changed to the Polyhedric projection, Projezione Naturale. The coordinates of Castello Monte Mario remained unchanged until the adjustment of the European Datum of 1950, even though the station was astronomically observed in 1904-1905 and in 1940. In 1886, the Italian Cadastre was formed, and the projection used to this day for Italian cadastral plans is the Cassini-Soldner. (The mapping equations for the Polyhedric projection and for the Cassini- Soldner projection are in the ASPRS Manual of Photogrammetry, 5th edition).

All of these 19th century Italian datums were referenced to the Bessel 1841 ellipsoid…

All the first order stations except for Učka (Monte Maggiore) are collocated with the K. und k. III Austro-Hungarian Military triangulation.

The cadastral plans have traditionally been cast on the Cassini-Soldner projection as mentioned earlier, but they have been essentially locally-referenced to church spires or other prominent features. The result has been a system of local Cassini-Soldner coordinate systems that total 849 origins!«

The Basics of Classical Datums (2000-04)*
»That observatory also had a “mire” or reference point on the horizon with a known azimuth from true north (North Celestial Pole). With a known direction reference and a known position, physically measuring a distance to another point on the ground allowed the computation of another known position (Latitude and Longitude) with reference to the datum origin point.

These points were observed as part of basic figures called quadrilaterals (four-sided), with all points being visible and all angles observed from all other points in the quadrilateral. Within each quadrilateral there is
an over-determination of lengths which is used in a least-squares so- lution.

Classifying data types and coordinate systems in terms of specific map projections and ellipsoids is a common mistake; the most important classifier is the datum [ ! ] and its adjustment date. Therefore, once the specific datum is identified, all other parameters follow by definition. For instance, the North American Datum of 1927 origin is at Meades Ranch, Kansas where: φo = 39° 13' 26.686" North, λo = –98° 32' 30.506" West of Greenwich, and geoid height = zero. The defining geodetic azimuth to station Waldo is: αo = 75° 28' 09.64", and the ellipsoid of reference is the Clarke 1866 where the semi-major axis a = 6,378,206.4 m, and 1/f = 294.9786982. The geoid height and direction of the gravimetric plumb line completed the definition.«

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
Scheda XVIII
« Odgovori #34 : 14 Veljača 2012, 22:30:54 poslijepodne »

Sekcija XVIII narečene Scheda karte u .jpg formatu dostupna je na ovoj web stranici.
Ta sekcija je nama najuže zanimljivo područje.
Generalkarte Scheda XVIII 23.9 Mb*
Pregledni list Scheda karte (Generalkarte Scheda Uebersicht)*
Vrijedi pogledat i još neke sadržaje s te stranice, kao i tog web mjesta*.

Kako georeferencirat? +proj=latlon i dodat samo shift?
Koji? 2°20’13.95”E, 2°20′14.025″E? Ne š ti razlike. 0.0525". Današnja sekunda na ekvatoru je 30.86166667 m, sekunda dužine  (suženje meridijana) je tu oko nas oko 22.46583333 m (na 43.5°N).
Koja je razlika među elipsoidima? Je li se Mungieru omakla omaška u ranim elipsoidima?
Bohnenberger, a = 6,376,602 m, 1/f = 324, 1810.-1845.
Zach, a = 6,376,602 m, 1/f = 324, 1845.-1863.
Wallbeck, a = 6,376,896 m, 1/f = 302.78, 1847.-1851.
Bessel 1841., a = 6,377,397.15, 1/f = 299.1528, 1863.(?) 1869.--
- ED50, WGS72
WGS84, a = 6,378,137 m, 1/f = 298.257 223 563
Zanemarit razlike i oprobat: +proj=latlon +pm=paris?

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
obfuscation
« Odgovori #35 : 14 Veljača 2012, 23:27:13 poslijepodne »

Od ovih arhaičnih elipsoida u GIS programima se može nać jedino Walbeck.
Online* su dostupni i podaci za jednu troparametarsku transformaciju na tom elipsoidu u jednom estonskom datumu.

transformationdX (m)dY (m)dZ (m)ellipsoida (m)1/f
CBS --> GRS80+822+380+649Walbeck 18196376896302.78

Abbreviations: CBS1838 – Triangulation of the coast of the Baltic Sea
Note that in case of CBS1838 and FSP1903 the Tallinn and Pulkovo zero meridians have been set to the modern longitude of those points.
Estonia (2007-8)*
»The Triangulation of the Coast of the Baltic Sea Datum (1829-1838) was based on the origin point at the Observatory of Tallinn where: Λo = 24° 47’ 32.55” East of Greenwich, and the ellipsoid of reference was on the Walbeck 1819.

and From Baltic Sea Triangulation Datum To WGS84 Datum: ∆X = +383m, ∆Y = +147m, ∆Z = +577m. [ ? ]

The “C-series maps” were introduced by the Soviets for civil use in Estonia in 1963, and were deliberately mantled in the typical Soviet penchant for obfuscation for the sake of obfuscation.

In keeping with the Soviet penchant for obfuscation, Soviet legisla- tion about construction activities for every town in Estonia had a local coordinate system based on a local geodetic network. Most of these goofy systems appear to continue to be a mystery to the local inhabit- ants as to how the local geodetic network was connected to the state geodetic system, or System 42 Datum. An example offered by the Estonian government for one of these “Local Urban Systems” (Linnade Kohalikud Süsteemid), “designed” for the capital of Tallinn is as follows: Gauss-Krüger Transverse Mercator (Faussi Mercatori Põiksilindriline), λo = 24o East, FE (Yo) = 24,000m), False Northing (Xo) = 6,536.000 m) at the equator, and a scale factor at origin (mo) = 1.0.«

Offline likarija

  • Gožđeno pero foruma
  • ***
  • Postova: 2.599
  • Nu me!
    • Oldtimer klub Zagreb
Odg: Povijest i GIS
« Odgovori #36 : 15 Veljača 2012, 22:29:08 poslijepodne »

brajo, meščini da te satrše vektori...
Da je semanile profesor Šušak živ... :spidom
:starac

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
Odg: Povijest i GIS
« Odgovori #37 : 15 Veljača 2012, 23:30:51 poslijepodne »

Ako ćemo vektorima nazvat obfuskatore među izvorima podataka o datumima i obfuskatore među autorima gis programa.

Pogledaj sliku ploče na Hermannskogelu. Podaci na jednu decimalnu sekundu. U kojem sustavu?
Probaj nać koordinate mareografa na Molu Sartorio u Trstu. Ili GPS koordinate Hermannskogela i Hundsheimerberga. Ne š ti tu vektora, redak puta stupac, ni transformacije koordinatnih sustava, tri translatacije, tri rotacije, skala.
U redu je da su te neke stvari tu klasificirane, samo nije u redu ne reć da jesu nego zavaravat svit da nisu i davat im nekonzistentne podatke.
To što daju grešku (puno) veću od reklamirane mogu razumjet. Treba prodat program i/ili podatke u datoteci distorzija.

Programi bagoviti redom. Podatci koji djeluju vjerodostojno su redovito interno nekonzistentni. Kao slučajno.

Nu, vid još jednom tablu na Hermannskogelu. Pa vidi podatke ovdje* (esri arcgis support forum) i usporedi.
K tome dodaj svjetski auktoritet jednog Mungiera koji ovdje* ne trepnuvši ubaci iznos sekunda istočne dužine Hermannskogela u odnosu na Ferro.
ArcGIS:
phi = 48° 16' 15,29"
lambda = 33° 57' 41.06"E Ferro or
lambda = 16° 17' 55.04" E Greenwich
alpha = 107° 31' 41.70"
Mungier:
phi = 48° 16' 15.29" N
lambda = 16° 17' 41.06"E Greenwich
alpha = 107° 31' 41.70"

Kad počmeš tražit gdje je greška, zaboraviš odakle si pošla i kamo ideš, ne vidiš ni šumu ni drvlje ni kamenje.
I onda konjina počme pričat o obfuskaciji. Paxmaster. Cili dan. Eeej. I kad sve posložiš program se sruši još te pita oće li poslat izvješće o greški. Paxmaster. Odo tuć led polugom.
Ma nek neka padaju ćuskije…

Ne moš preklopit ovaj Ferro nikako kako Bog zapovida.
http://de.wikipedia.org/wiki/Franzisco-Josephinische_Landesaufnahme
Cassini-Soldner

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
GA ČR 205/04/0888
« Odgovori #38 : 16 Veljača 2012, 13:33:17 poslijepodne »

Kroz projekt GA ČR 205/04/0888 Česi su uredno digitalizirali i preklopili povijesne karte na svom području.
Odstupanja digitaliziranih sadržaja od modernih podloga (digitalni ortofoto, satelitske slike - Google Maps i Earth) su puno manja nego kod nas.
Za to nema opravdanog razloga.
Vidi:
http://www.geo-portal.hr/Portal/ptk
http://preglednik.arkod.hr

Opsežne publikacije (veći dio na češkom) o projektu koji je uklopio neuklopive karte dostupne su na stranicama:
http://projekty.geolab.cz/gacr/a/publik.htm
http://projekty.geolab.cz/gacr/a/publik.htm
Dio naslovâ, samo zbog ključnih riječi:
Veverka B. Georeferencing of the history military mapping on the territory of the Czech Republic.
Zimová R. Cartographic analysis of maps from historical military mappings. In Geographical Aspects of Central European Space.
MIkšovský M., Zimová R. Mapping the Czech lands during the 18th century.
Brůna, V., Křováková. K. Interpretation of Stabile Cadastre Maps for Landscape Ecology Purposes.
Zimová R., Pešťák J., Veverka B. Historical Military Mapping of Czech Lands - Positional Accuracy of Old Maps.
Zimová R., Pešťák J., Veverka B. Historical Military Mappings of the Czech Lands - Cartographic Analysis.
Cajthaml J. Georeferencing of Historical Military Mappings and Later Map Internet Publishing.
Cajthaml J., Zimová R. Veverka, B., Mikšovský, M., Krejčí J., Pešťák J.: Georeferencing and Cartographic Analysis of Historical Military Mappings of
Bohemia, Moravia and Silesia.

Křováková K., Brůna V. Historical landscape of Šumava in the light of paleobotanic and antique maps’ evidence.
« Zadnja izmjena: 16 Veljača 2012, 13:53:05 poslijepodne glonga »

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
Thompson
« Odgovori #39 : 16 Veljača 2012, 15:16:23 poslijepodne »
vektori...
Redovi (Taylorovi), polinomi, eliptični integrali… prije bi se reklo.

Lee, L.P. (1976). Conformal Projections Based on Elliptic Functions (Supplement No. 1 to Canadian Cartographer, Vol 13.) pp. 1–14, 92–101 and 107–114. Toronto: Department of Geography, York University. A report of unpublished analytic formulae involving incomplete elliptic integrals obtained by E. H. Thompson in 1945. Available from the of Toronto Press*, *

Redfearn series*
O ovome, čini se, doduše malo čudno, govori Viduka. Akumulacija grešaka.
»The exact solution of Lee-Thompson,[12] implemented by Karney (2011),[13] is of great value in assessing the accuracy of the truncated Redfearn series. It confirms that the truncation error of the (eighth order) Redfearn series is less than 1 mm out to a longitude difference of 3 degrees, corresponding to a distance of 334 km from the central meridian at the equator but a mere 35 km at the northern limit of an UTM zone.«
Bowring series*

Karney.*:
»Relevant section of Lee's 1976 paper (price $13).«
Zoster:
a ja visim obješen mlad za 12 dolara
« Zadnja izmjena: 16 Veljača 2012, 15:26:03 poslijepodne glonga »

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
Hengl
« Odgovori #40 : 18 Veljača 2012, 03:06:05 prijepodne »
 
Hengl*:
»The MGI / Balkans Zone 6 in the PROJ.4 should be set as:
+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000 +y_0=0 +ellps=bessel
 +towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,0.99999445824
 +units=m

This page was last modified on 29 September 2011, at 08:05.«

Should not.

PROJ4 source code. Datoteka pj_datum_set.c (2009-01-06 02:11:57Z). Online (i) ovdje*:
/* transform from parts per million to scaling factor */
 projdef->datum_params[6] =
 (projdef->datum_params[6]/1000000.0) + 1;

Znači M_BF = 5.541764 ppm je ulazni podatak za PROJ4. Ne unosi se M_BF = ( 1 + dS*10^-6) = ( 1 - 5.541764*^10-6 ) = 0.99999445824, ni 0.999994458236. Ne vidim u toj ni drugim datotekama kôd koji bi ocjenjivao valjanost unosa tog parametra, a ne znam ni kako bi se to napravilo jer su moguć ulazni podaci i ±5.541764 i ±0.99999445824… nisu "out of range".

Uzput, u toj datoteci se vidi i konverzija lučnih sekundi rotacija u radijane.
U datoteci pj_transform.c (online*) se vidi dalji postupak s tim parametrom (M_BF):
#define M_BF (defn->datum_params[6])
Nu Henglov popravljeni PROJ4 string ne daje puno bolji rezultat od "kvarnog" na onoj točki T249.
M_BF, ∆E, ∆N, ∆EN
0.999994458236, -0.5376, -1.1515, 1.270813129
5.541764, -1.248599999584250, -0.536399999633431, 1.358943309549210
-5.541764, -1.012399999424810, -0.538399999961256, 1.146659635111330

U komercijalnim programima dokumentacija nije ništa bolja, s tim da imaš jednu prednost, ne moraš gledat u izvorni kôd jer to (najčešće) ne možeš.
« Zadnja izmjena: 18 Veljača 2012, 03:12:35 prijepodne glonga »

Offline belevarac

  • Sve zna, sve čita, svugdje piše...
  • Postova: 1.801
Odg: Povijest i GIS
« Odgovori #41 : 19 Veljača 2012, 22:33:00 poslijepodne »
brajo, meščini da te satrše vektori...
Da je semanile profesor Šušak živ... :spidom

Semanile???
Znameniti grad na obali, Olisippo [Lisabon], csuven zbog svojih kobila koje zatrudne pomochu zapadnog vitra (Plinije Stariji)

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
log ( A—B ) = 4·702 1012,8
« Odgovori #42 : 20 Veljača 2012, 03:33:49 prijepodne »
Semanile???
Živ? Čini mi se da si na nekoj temi spominjao "ručno" korjenovanje, logaritmiranje, antilogaritmiranje… Ne razumijem zapis broja u jednom starostavnom članku.
S. Wellisch. Positionbestimmung des Stephanturmes. Denkschriften der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschafliche Klasse. 92. Band. Wien 1916.
Dostupno na archive.org*
Imam pri ruci nekoliko starostavnih izdanja logaritamskih tablica, nu nisu mi od pomoći. Wellisch koristi srednju točku kao decimalnu točku npr. u zapisu zemljopisne dužine i širine:

BreiteLänge von Ferro
Hermannskogel48° 16' 15"290033° 57' 41"0600
Hundsheimer48 07 57·636434 36 24·0265
Anninger48 02 52·720333 54 49·5000


HermannskogelHundsheimer107° 31' 41"700
HermannskogelAnninger188 09 25·077
HundsheimerAnninger259 55 05·159
HundsheimerHermannskogel288 00 33·472
AnningerHermannskogel8 07 17·264
AnningerHundsheimer79 24 08·726

E, sad slijedi dio u kojem ne razumijem značenje zadnje znamenke u nijednom broju, mislim na zadnju znamenku, onu iza zareza.

»Die Logarithmen der Längen der Dreiecksseiten.
log (Hermannskogel—Hundsheimer)=4·702 1012,8
log (Hermannskogel—Anninger) = 4·398 6072,2
log (Hundsheimer—Anninger)=4·719 8689,4«

Libar: Florian Cajori. A History of Mathematical Notations., koji je dijelom dostupan na books.google.com, mi ništa ne govori o takvom zapisu. Od str. 105.* Vol.2. nadalje i naokolo.

Ako zanemarim tu zadnju znamenku i npr. uzmem log (He-Hu) = 4.7021012 = 10^4.7021012 = 50361.794898198 i tako za sve onda ne mogu zatvorit triangulaciju.
Uzput, autor wiki članka* o Hundsheimer Berg-u navodi:
»Er ist ein wichtiger Vermessungspunkt erster Ordnung und Ziel der maßstabsgebenden Seite des früheren österreichischen Fundamentalpunkts Hermannskogel, dem höchsten Berg Wiens. Diese Sichtlinie von 60 km Länge quert das Wiener Becken in seiner vollen Breite. Der Vermessungspfeiler steht nahe beim Gipfelkreuz und der kleinen, nur am Wochenende geöffneten Berghütte.«
Ovih 60 km dogledne crte preuzima iz ozbiljnijih "stručnih" glasila koi mi se sad ne daju tražit. Ni u kojoj mjernoj jedinici i nikojim računom, ni po elipsoidu, ni po terenu, a kamoli po "zračnoj crti" tu nema 60 km.
Ovako se čini da je autor imao pri ruci tablice s mantisama od šest znamenaka, sedme znamenke dobivao popravkama, a iza zareza pisao ostatak koji nije mogao popravit.
Ili je imao tablice (tri pa četiri znamenke) s mantisama od sedam znamenaka (znamenki?) i dopisao razliku iza zareza?
« Zadnja izmjena: 20 Veljača 2012, 04:05:14 prijepodne glonga »

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
Schrön: — Was ist Prphtle?
« Odgovori #43 : 21 Veljača 2012, 04:17:33 prijepodne »

Ludwig Schrön. Siebenstellige gemeine logarithmen der zahlen von 1 bis 108000 und der sinsus, cosinus, tangenten, und contangenten aller winkel des quadranten von 10 zu 10 secunden.* Braunschweig. 1871. 11-th Ed.

Google: — Did You mean purple?
— Yess. Deep. Not rain.



p E.4*

»26 Die dritte Methode der Vereinigung des Prpthls mit dem Logarithmus der Tafel bezweckt überhaupt eine schärfere Rechnung mit siebenstelligen Logarithmen durch Hinzufügung der ersten Decimalstelle der siebenten Mantisse.
 
1. Wird aus der Tafel I. oder II. ein Logarithmus ohne interpolation entnommen
so wird neben die siebente Mantisse statt der ersten Decimalstelle derselben das Zeichen — oder + gesetzt je nachdem jene Mantisse unterstrichen ist oder nicht wie im Anfange des vorigen Paragraphen. Nach §. 16 bezeichnet ∓ bezüglich den Zusatz ∓ 1/4 oder ∓ 0,25 oder ∓ 0,3 Einheiten der siebenten Mantisse. Wird jedoch der Logarithmus einer Zahl aus der dritten Abtheilung der Tafel I. mit acht Mantissen entnommen so wird die achte Mantisse sofort als erste Decimalstelle der siebenten in der Rechnung angesetzt z. B. der kleinere Logarithmus (§. 13) als 4,9891427— und der grössere als 4,9891471+, dagegen (S. 189) log. 101,717 = 2,0073935.4.

2. Wird der Logarithmus durch Interpolation entnommen so wird bei der Vereinigung des Logarithmus der Tafel mit dem vollständigen Prpthl (§. 20) auch die erste Decimalstelle des letzteren in Ansatz gebracht. Z.B. (§. 13 bis §. 15) log. 97531,6 = 4,9891453.4 mit dem Fehler 0,88 Einheiten der achten Mantisse oder F = 89 während nach der 1. Methode (§. 14) F = 85 war.«

p E.9*

»59 Gehört ein gegebener Logarithmus nach der 3. Methode, demnach mit Zehnteln dersiebenten Mantisse, zur zweiten Abtheilung, so muss man wenn beide anliegenden Logarithmen unterstrichen sind oder nicht, den Überschuss um den Zusatz 0,3 bezüglich vermehren oder vermindern wie §. 56 und zwar hier mit einem reellen Erfolge, weil der gegebene Logarithmus durch die Zehntel der siebenten Mantisse eine dem Zusatze entsprechende Genauigkeit besitzt.
 [ … ]
2 Beisp. (S. 117, §. 27) 2,8179978.6 = log. x. Die beiden anliegenden Logarithmen sind nicht unterstrichen daher der Überschuss — 0,3 = 30,3. Hiervon 26,4 (für 4 bei D = 66) lässt 3,9 wozu 3,96 für 6 giebt x = 657,6546 wie §. 27. Nach der 2. Meth. war dort log. x = *679, wornach der Überschuss *679 — *648,3 = 30,7 und x = *347 entsteht. Nach der 1. Meth. war dort log. x = *678, was den Überschuss *678 — *648 = 30 und x = *345 giebt. «

*

4·702 1012,8
 702 0943 | 50361
 702 1030 | 50362
 87, 69
 P.P.  7 | 60,9 | 50361,7
 69 - 60,9 = 8,1 ;
 8,1 * 10 = 81
 P.P. 9 | 78,3 | 50361,79
 81 - 78,3 = 2,7
 2,7 * 10 = 27
 P.P. 3 | 26,1 | 50361,793 (4)
 27 - 26,1 = 0,9
 0,9 * 10 = 9
 
 
 2. 87; 69,8
 P.P. 8 | 69,6 | 50361,8
 69,8 - 69,6 = 0,2
 0,2 * 10 = 2
 P.P. 1 | 8,7 | 50361,80
 20
 P.P. 2 | 20 | 50361,802
 
 10^4.7021012 = 50361.794898198
10^4.70210128 = 50361.80417518425

Offline glonga

  • Forumska Al-tipkovnica
  • Gožđeno pero foruma
  • ***
  • Postova: 10.154
Prpthle
« Odgovori #44 : 21 Veljača 2012, 15:54:48 poslijepodne »
log (Hermannskogel—Hundsheimer)=4·702 1012,8
log (Hermannskogel—Anninger) = 4·398 6072,2
log (Hundsheimer—Anninger)=4·719 8689,4

Zadnje znamenke, one iza zareza (,8; ,2; ,4), nisu osme znamenke mantise, nego prve decimalne znamenke sedme znamenke mantise, ma kako to nesuvislo zvučalo.
To znači da ipak moramo zavirit u tablice, ako želimo bit sigurni u sedmu (i/ili osmu) značajnu znamenku rezultata jer nam 10^(osam_znamenaka) ne će dat odgovarajući antilogaritam s dovoljnom preciznošću na sedam ili više znamenaka.

Etc.

log (He—A) = 4·398 6072,2
 10^4.3986072 = 25038.436136631100000 a
 10^4.3986073 = 25038.441901944700000 b
10^4.39860722 = 25038.437289693700000
lin. interp.. = 25038.437289693800000


Tablice.*
3985996 (25038)
3986170 (25039)
D = 3986170 - 3985996 = 174
Z = 3986072.2 - 3985996 = 76.2
P.P. 174 | 69.6 | 4 | (25038.4)
76.2 - 69.6 = 6.6
6.6 * 10 = 66
P.P. 52.2 | 3 | (25038.43)
66 - 52.2 = 13.8
13.8 * 10 = 138
P.P. 121.8 | 7 | (25038.437)
138 - 121.8 = 16.2
16.2 * 10 = 162
P.P. 156.6 | 9 | (25038.4379)

log (Hu—A)=4·719 8689,4

 10^4.7198689 = 52464.906110513900000
 10^4.7198690 = 52464.918191006500000
10^4.71986894 = 52464.910942710600000
lin. interp.. = 52464.910942711000000


Tablice.*
7198614 (52464)
7198697 (52465)
D = 83, Z = 75.4 + 0.3 = 75.7 (obje sedme znamenke mantise podcrtane - 0.3), P.P.(74.7) = 9, (52464.9)
Z' = 10, P.P.(8.3) = 1, (52464.91)
Z" = 17, PP(16.6) = 2, (52464.912)
« Zadnja izmjena: 21 Veljača 2012, 16:01:16 poslijepodne glonga »